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Abstract 
 

Algorithm for parallel machines scheduling problem to minimize the earliness and tardiness costs 

is proposed in this study. The problem is associated with the assignment of jobs to machines and 

determination of staring time for each job in a given sequence. Population-based incremental 

learning (PBIL) algorithm is used to allocate the jobs to machines. The optimal timing algorithm 

based on the minimum block cost function calculation is then employed to decide the starting time 

of jobs on each machine. To illustrate the performance of proposed algorithm, numerical examples 

generated randomly are tested. The numerical results obtained from PBIL combined with optimal 

timing algorithm called PBILOTA are compared to EDDPM (Earliest Due Date for Parallel 

Machines) to indicate the decrease in penalty cost. From the experimental results, it is shown that 

PBILOTA is an efficient algorithm for solving parallel machines scheduling problem with 

earliness-tardiness costs minimization. 
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1. Introduction 
 

Study related to minimization of earliness and tardiness costs plays an important role in production 

system due to the Just-in-Time (JIT) production philosophy. The problem associated with the 

objective to minimize earliness and tardiness penalties has been focused on algorithm design 

making the jobs finished exactly on their due dates or as close as possible. Lee and Choi [1] 

considered a job scheduling problem for a single machine to minimize early-tardy penalty costs. 

An optimal timing algorithm was used to decide the optimal starting time of each job in a given 

sequence generated by genetic algorithm. The optimal starting time was obtained by shifting a 

block to a point giving the minimum block cost function. Bauman and Józefowska [2] proposed an 

algorithm for solving a single machine scheduling problem with linear earliness and tardiness 

costs.  
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The objective was to find a vector of job completion time such that the total cost is 

minimum. Kedad-Sidhoum and Sourd [3] proposed fast neighborhood search based on a block 

representation of schedule. To get a larger neighborhood search, random swap and earliness-

tardiness perturbation were performed.  Feasible solutions were considered as a vector of the 

completion times of all jobs. Kianfar and Moslehi [4] developed a branch and bound algorithm for 

solving a single machine scheduling problem to minimize the weighted quadratic earliness and 

tardiness penalties such that no machine idle time was allowed. An arc-time-indexed formulation 

and a branch and bound algorithm were presented by Keshavarz et al. [5] to investigate a single 

machine sequence dependent group scheduling problem combined with earliness and tardiness 

considerations. The single machine scheduling problem with distinct time windows and sequence 

dependent setup time was addressed by Rosa et al. [6]. The problem involved the determination of 

job sequence and starting time of each job in the sequence. Implicit enumeration and general 

variable neighborhood search algorithms were proposed to determine the job sequence and idle 

time insertion algorithm was then used to determine the starting time for each job. In addition, 

parallel machines system has been considered. Kayvanfar et al. [7] studied scheduling problem on 

unrelated parallel machines with the objective to minimize earliness-tardiness costs and makespan 

simultaneously. Therefore, no inserted idle time was allowed. ISETP was used to assign the jobs 

on parallel machines and PNBC-NBE heuristic was then applied to acquire the optimal set of jobs 

compression and expansion processing time in a given sequence. Scheduling problem on unrelated 

parallel machines with sequence dependent setup time was studied by Zeidi and Mohammad 

Hosseini [8]. An integrated meta-heuristic algorithm consisting of genetic algorithm and simulated 

annealing method was proposed to solve the problem in which simulated annealing method was 

used as a local search to improve the quality of solutions. Alvarez-Valdes et al. [9] proposed 

hybrid heuristic algorithm combining priority rules for assigning jobs to machine and local search 

for solving the one-machine subproblem. Path relinking and scatter search were also applied to 

obtain high quality of solutions. Hung et al. [10] addressed the scheduling jobs with time windows 

on unrelated parallel machines with sequence dependent setup time. Machine and job dependent 

processing times were also considered. Three solution methods based on mixed integer 

programming (MIP) called HCMIP, ETMIP and HIMIP were proposed for solving the problem. 

Wu et al. [11] investigated unrelated parallel machine scheduling with consideration of job 

rejection and earliness-tardiness penalties. Hybrid algorithm combining genetic algorithm and tabu 

search were presented to solve the problem. 

In the literature, the exact method and heuristic algorithm were proposed for solving 

scheduling problem. This study is associated with the job assignment to parallel machines and 

determination of starting time for each job in a given sequence. Population-based incremental 

learning (PBIL) algorithm explored by Baluja [12] is used to create feasible solution indicating a 

sequence of jobs on each machine. PBIL is an evaluation algorithm combining the mechanism of 

genetic algorithm and competitive learning. Probability vector is applied to define a population 

representing solution of problem. To obtain high quality of solution, high values of probability in 

probability vector are updated based on the best solution at each iteration. Once a job sequence is 

given, optimal timing algorithm is applied to decide optimal starting time for each job in the 

sequence as one-machine subproblem. 

The remainder of this paper is organized as follows. Section 2 describes the problem 

description and some notations used throughout in this paper. Three algorithms for assigning and 

sequencing jobs to parallel machines, dispatching rule based on earliest due date, optimal timing 

and population-based incremental learning algorithms are also explained in this section. Section 3 

presents the experiment results obtained from the proposed algorithm. Finally, the conclusions are 

provided in section 4.  
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2. Materials and Methods 
 

2.1 Problem description 
 

Given n  jobs and m  parallel machines, the job i for 1, 2,...,=i n  can be processed on any 

machines k  for 1,2,...,=k m  without interruption. A machine can perform only one job at a time 

and the processing time of job i, denoted by ip , is identical for all machines. Let id  and ic  be due 

date and completion time of job i, respectively. Job i is said to be early if i ic d  and the earliness 

cost is ( ) −i i id c  where  i  is earliness weight while it is said to be tardy if i ic d  and the 

tardiness cost is ( ) −i i ic d  where  i  is tardiness weight. Job i is on time if =i ic d . All jobs are 

available to process at time zero and can be started immediately after the predecessor job is 

completed. The inserted idle time is allowed to determine the starting time of each job in which 

the completion time is close to its due date. The cost of job i processed completely before or after 

its due date is represented by equation (1). 

( )  = +i i i i if c E T              (1) 

Where  max 0,= −i i iE d c  and  max 0,= −i i iT c d . The objective of the study is to determine 

the job schedule that minimize the total cost calculated by the following equation. 

Total cost ( )
1=

=
n

i

i

f c  
            (2) 

 

2.2 Dispatching rule 
 

Definition 2.1 A set of jobs  1 2, ,..., nJ J J  is in the order of earliest due date (EDD) if the jobs 

are sequenced according to the non-decreasing due date, i.e., 
1 2

...  
nJ J Jd d d . 

In order to obtain the job sequence on each machine, the jobs in EDD order are assigned 

to the machines depending on total completion time. The steps for the job assignment called 

Earliest Due Date for Parallel Machines (EDDPM) are as follows. 

 

Algorithm 1: EDDPM 

 

Step 1: Let  1 2, ,...,= nS J J J  be a set of jobs sequenced by EDD rule and ' =S  be a set of 

assigned jobs. 

Step 2:  Let 0=kTC  be the total completion time on machine k , 1,2,...,=k m .  Assign the first 

job 1J  to the first machine and update 
11 = JTC p .  Put 1J  in S  to 'S ,  1' '= S S J  and 

 1= −S S J  

Step 3:  Assign the next job iJ  in S  to all machines and calculate temporary 
' = +

ik k JTC TC p . 

Job iJ  is processed on a machine giving minimum 
'

kTC , in the case that 
' '=k pTC TC , where  

k p , a machine with minimum index is chosen. Update 
'=k kTC TC ,  ' '=  iS S J  and 

 = − iS S J . 

Step 4: Continue step 3 until  1 2' , ,...,= nS J J J and = S . 
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To present the job sequence and penalty cost resulting from applying EDDPM, the input 

data for 10 jobs given in Table 1 are used for the calculation and the results are shown in example 

2.1. 

 

Table 1. Input data for 10 jobs 

Job 1 2 3 4 5 6 7 8 9 10 

ip  (day) 6 5 1 4 3 10 3 3 4 4 

id  (day) 11 10 12 15 15 8 13 14 14 10 

i  ($/day) 1.9 1.8 1.8 1.1 2.3 1.4 1.9 1.2 1.8 0.9 

i  ($/day) 3.8 3.7 3.4 1.4 2.7 1 0.9 0.8 1.8 3.3 

 

Example 2.1 Consider the input data given in Table 1. A set of job ordered by EDD rule is 

 6,2,10,1,3,7,8,9,4,5=S .  By applying EDDPM, job sequence for each machine is shown in 

Figure 1. 

 

Figure 1. Job sequences for each machine resulting from applying EDDPM algorithm 

 

It can be seen from Figure 1 that job 6 is completed after the due date for two days, i.e. 

 6 6 6max 0, 0E d c= − = and  6 6 6max 0, 2T c d= − =  while job 9 is completed on its due date, 

i.e.  9 9 9max 0, 0E d c= − =  and  9 9 9max 0, 0T c d= − = . The costs of job 6 and job 9 calculated 

by equation (1) are as follows: 

( ) ( )( ) ( )( )6 1.4 0 1 2 2f c = + =  

( ) ( )( ) ( )( )9 1.8 0 1.8 0 0f c = + =  

 

Therefore, the penalty cost of machine 1 calculated by equation (2) is $2. For machine 2, jobs 2, 3, 

7 and 8 are finished before the due date for 5, 6, 4 and 2 days, respectively, and job 5 is finished 

on its due date. Then, 

 2 2 2max 0, 5E d c= − = ,  2 2 2max 0, 0T c d= − = , 

 3 3 3max 0, 6E d c= − = ,  3 3 3max 0, 0T c d= − = , 

 7 7 7max 0, 4E d c= − = ,  7 7 7max 0, 0T c d= − = , 

 8 8 8max 0, 2E d c= − = ,  8 8 8max 0, 0T c d= − = , 

 5 5 5max 0, 0E d c= − = ,  5 5 5max 0, 0T c d= − = , 
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and the costs for all jobs are as follows: 

( ) ( )( ) ( )( )2 1.8 5 3.7 0 9f c = + =  

( ) ( )( ) ( )( )3 1.8 6 3.4 0 10.8f c = + =  

( ) ( )( ) ( )( )7 1.9 4 0.9 0 7.6f c = + =  

( ) ( )( ) ( )( )8 1.2 2 0.8 0 2.4f c = + =  

( ) ( )( ) ( )( )5 2.3 0 2.7 0 0f c = + =  

 

Thus, the penalty cost of machine 2 is $29.8. Similarly, the penalty cost of machine 3 is $8.4 and 

the total cost for all machines is $40.2. 
 

2.3 Optimal timing algorithm  
 

Optimal timing algorithm is an algorithm used to decide the optimal starting time of each job . Lee 

and Choi [1] proposed an optimal timing algorithm to determine the starting time of the jobs in a 

given sequence without total cost evaluation. The minimum block cost function is calculated to 

determine the extreme point which decides the starting time of the first job in the block. The 

extreme point is a point where the slope begins to be greater than or equal to zero . Due to the 

earliness and tardiness penalties, idle time can be inserted between blocks to shift the entire block 

toward the minimum point. In order to apply the optimal algorithm proposed by Lee and Choi [1] 

to this study, the steps of the algorithm can be concluded as follows. 
 

Algorithm 2: Optimal timing algorithm (OTA) 

 

Step 1: Let  1 2, ,...,= nS J J J  be a set of jobs sequenced by EDD rule and ' =S  be a set of 

assigned jobs. 

Step 2: Put the first job 1J  in block 1B , ( )
1 1 1

max 0,= −J J Js d p  and ( )
1 1 1

max ,=J J Jc d p , where 

1Js  and 
1Jc  are starting and completion times of job 1J , respectively.  1= −S S J  and  1' =S J . 

Step 3: For any block tB  and job iJ , 2,...,=i n , consider the following three cases. 

(1) If 
1−
+ 

i i iJ J Jc p d , then = −
i i iJ J Js d p , =

i iJ Jc d , 1= +t t ,  =t iB J ,  = − iS S J

and  ' '=  iS S J . 

(2) If 
1−
+ =

i i iJ J Jc p d , then 
1−

=
i iJ Js c , =

i iJ Jc d ,  = t t iB B J  ,  = − iS S J  and 

 ' '=  iS S J .  

(3) If 
1−
+ 

i i iJ J Jc p d , then 
1−

=
i iJ Js c , = +

i i iJ J Jc s p and  = t t iB B J ,  = − iS S J and 

 ' '=  iS S J . 

Step 4: Determine the minimum block cost function by comparing the slopes of block which can 

be obtained from the earliness and tardiness weights and shift the entire block tB  toward the 

minimum point until one of the following cases occurs. 
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(1) 
1Js  in block 1B  is zero. 

(2) The minimum point is reached. 

(3) 
iJs  in block tB  equals to 

1−iJc  in block 1−tB . In this case, blocks tB  and 1−tB  are 

concatenated and the new minimum block cost function has to be calculated. 

Step 5: Continue steps 3 and 4 until  1 2' , ,...,= nS J J J  and = S . 

Example 2.2 To determine the optimal starting time of the jobs on each machine as shown in 

Figure 1 with the given input data in Table 1, algorithm 2 is utilized. In this example, only block 

cost function of machine 2 is calculated.  

Job 2: 

Step 1: Let  2,3,7,8,5=S  be the job sequence of machine 2 and ' =S . 

Step 2: Set  1 2=B , 2 5=s , 2 10=c ,  3,7,8,5=S  and  ' 2=S . In this case, job 2 has no 

penalty. 

Job 3: 

Step 3: Since 2 3 311+ = c p d , 3 11=s , 3 12=c ,  2 3=B ,  7,8,5=S  and  ' 2,3=S . Job 3 has 

no penalty. 

Job 7: 

Step 3: Since 3 7 715+ = c p d , 7 12=s , 7 15=c ,  2 3,7=B ,  8,5=S  and  ' 2,3,7=S . 

Step 4: Compare the slope of block 2B , 3 7 3.7 − − = − , 3 7 0.9 − + = −  and 3 7 4.3 + = . 

Thus, job 3 is still completed on its due date and block 2B  is not shifted. 

Job 8: 

Step 3: Since 7 8 818+ = c p d ,  2 3,7,8=B , 8 15=s , 8 18=c ,  5=S  and  ' 2,3,7,8=S . 

Step 4: Compare the slope of block 2B  as follows. 

3 7 8 4.9  − − − = −  

3 7 8 2.9  − − + = −  

3 7 8 0.1  − + + = −  

3 7 8 5.1  + + =     

Job 3 is finished on its due date and block 2B  is placed at the present position. 

Job 5: 

Step 3 : Since 8 5 521+ = c p d ,  2 3,7,8,5=B , 5 18=s , 8 21=c , = S  and  ' 2,3,7,8,5=S . 

Step 4: By comparing the slope of block 2B , job 7 is finished on its due date and it has to be 

shifted for 2 time units left. Because 7 7 3 2−  −c d s c , block 2B  can be shifted only one time unit. 

Now, block 1B  and 2B  are concatenated such that 3 10=s , 3 11=c , 7 11=s , 7 14=c , 8 14=s , 

8 17=c , 5 17=s , 5 20=c  and  1 2,3,7,8,5=B . Due to the concatenation of block, the new 

minimum block cost function of 1B  is calculated and it is found that job 7 is finished on its due 

date. Thus, block 1B  is shifted for one time unit left. Now, = S  and  ' 2,3,7,8,5=S , therefore, 

the algorithm is terminated. 

The optimal starting time of jobs on each machine is shown in Figure 2. The earliness 

and tardiness costs of machine 2 is reduced to $17.8 and the total cost for all machines is $24.3. 

 



Current Applied Science and Technology Vol. 20 No. 2 (May-August 2020) 

192 

 

 

Figure 2. Optimal starting time for each job after applying algorithm 2 

 

2.4 Population-based incremental learning algorithm 
 

Population-based incremental learning (PBIL) algorithm is an evaluation algorithm using a 

probability vector to describe the population representing the solution of the problem. Each 

position of solution is represented by either 0 or 1 which can be obtained by the probability vector. 

Suppose that probability generating 1 for k-th position is 0.6, the probability generating 0 for k-th 

position is 0.4 resulting from subtracting 0.6 from 1. The following definition describes the job 

assignment to the machines used in this study. 

Definition 2.2 Let  = kiA a  be an m n  matrix such that  0,1kia . A  is satisfied by the 

properties that 
1

1
=

=
m

kik
a  and 

1 1= =
= 

m n

kik i
a n . If 1=kia , then machine k  operates job i  and 

A  is called population. 

Example 2.3 Given population matrix A  as follow.  

 

 

 

 

 

 

 

Population matrix A  is 3 10  matrix and it indicates that there are 3 machines and 10 jobs such 

that machine 1 operates jobs 6 and 9, machine 2 operates jobs 2, 3, 5, 7 and 8 and the last machine 

operates the remaining jobs satisfying job assignment as shown in Figure 1. It can be seen that 

population matrix A  only specifies the jobs which will be processed by a machine. Thus, EDD 

rule is used to determine the sequence of jobs. 

The procedure of PBIL combined with optimal timing algorithm called PBILOTA 

applied to scheduling problem to minimize earliness and tardiness costs is as follows. 

 

Algorithm 3: PBILOTA 

 

Step 1: Let 1n  matrix P  be the initial probability vector. 

Step 2: Create a set of feasible solution called population according to probability vector P
representing the job assignment on machines. 

Step 3: Sort the jobs by EDD rule to determine the job sequence on each machine. The optimal 

timing algorithm is applied to find the starting time of jobs in each block and total cost is then 

0 0 0 0 0 1 0 0 1 0

0 1 1 0 1 0 1 1 0 0

1 0 0 1 0 0 0 0 0 1

A

 
 

=
 
  
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calculated for all solutions in step 2 based on eq. (2). The best solution is a population giving the 

minimum total cost. 

Step 4: Update probability vector P  by using the following equation. 
( ) ( ) ( ) ( ) ( )1 1

1
− −

= − +
t t t

i i iprob prob LR Best LR                (3) 

For 1, 2,...,=i n  and 
( )1−t

iBest  is bit integer (0 or 1) of the best solution at iteration 1−t  and LR  is 

learning rate. 

Step 5: Continue step 2 to step 4 until stopping criterion is satisfied. The maximum number of 

iteration, 500 iterations, is set to be stopping criteria. When the algorithm is terminated, 

probability values in probability vector are approached to either 0 or 1. 

Example 2.4 In order to reduce earliness and tardiness costs by using PBILOTA, the initial 

probability vector is set based on the solution obtained from EDDPM combined with optimal 

timing algorithm in example 2.2. 

After applying PBILOTA with the input data given in table 1 to determine optimal 

starting time for each job, the total penalty cost is reduced from $24.3 to $12.3 and job schedule 

for all machines is shown in Figure 3. 

 

 

Figure 3. Job schedule obtained from applying PBILOTA 

 

 

3. Results and Discussion 
 

3.1 Validation 
 

To validate and indicate that the proposed PBILOTA can reduce total cost, the job information 

presented in Kayvanfar et al. [7] is employed to test the algorithms. The information is shown in 

Table 2 consisting of processing time (day), due date (day), earliness and tardiness weights ($/day) 

for each job. This information is used to illustrate ISETP performance for 8 job with 3 machines 

proposed by Kayvanfar et al. [7]. The results obtained from using ISETP, EDDPM and PBILOTA 

with the given information are shown in Figure 4. 

Figure 4 shows the jobs schedule and total cost obtained from applying ISETP, EDDPM 

and PBILOTA. ISETP is a procedure proposed by Kayvanfar et al. [7] for assigning the jobs on 

parallel machines to minimize earliness-tardiness penalties and makespan simultaneously, thus no 

inserted idle time is allowed. To satisfy the objective of this study, optimal timing algorithm is 

utilized to find the starting time of each job to reduce the cost for comparison. As seen in Figure 

4(a), the cost of ISETP after applying optimal timing algorithm is $3.5. The solution of EDDPM 

shown in Figure 4(b) is set to be one of the populations in PBILOTA such that the cost is set to be 

https://dl.acm.org/profile/81555816756
https://dl.acm.org/profile/81555816756
https://dl.acm.org/profile/81555816756
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upper bound. Although the cost of EDDPM is more than the cost of ISETP, it is decreased from $5 

to $2.5 after PBILOTA is performed as shown in Figure 4(c). 

 

Table 2.  Job information presented in Kayvanfar et al. [7]. 

Job 1 2 3 4 5 6 7 8 

ip  4 6 5 7 5 6 4 6 

id  5 5 11 6 13 13 11 20 

i  0.5 1 1 1.25 1.5 1 1.5 0.5 

i  0.5 0.5 1.25 0.5 0.5 1 3 0.5 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

     (a) ISEPT: cost $3.5            (b) EDDPM: cost $5 

 

 

 

 

 

 

 

 

 

 

 

 

(c) PBILOTA: cost $2.5 

 

Figure 4. The results obtained from (a) ISETP, (b) EDDPM and (c) PBILOTA with job 

information in Table 2 

 

3.2 Parameter Setting 
 

To illustrate the performance of the proposed method, numerical examples are generated. In order 

to generate the parameters used for the random problems, the procedures found in the literatures 

are applied. The proposed algorithm is tested on the problem instances consisting of 20, 40, 60, 80 

and 100 jobs. Due to parallel machines, the number of machines is related to the number of jobs 

https://dl.acm.org/profile/81555816756
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such that  0.5= +m n , where 4,5,6 =  and  x  is the greatest integer less than x  [10]. 

Processing time of job i  is calculated based on the product of based processing time and machine 

adjusting factor, i ib  [13]. In this study, ib  and  i  are randomly generated from the uniform 

distribution with the range of [1,7] and [0.5,1.5], respectively. An integer due date is generated 

from the uniform distribution ( ) ( )1 2 , 1 2− − − +  T R P T R P  [4] for ( )1

n

ii
P p m

=
=  . Tardiness 

factor T  is a parameter indicating the opportunity that a job is tardy and parameter R  is due date 

range. To avoid crash due date in this study, normal due date can be randomly generated by setting 

0.2=T  and 0.5=R . The earliness and tardiness weights are randomly generated from the range 

of [0.5,2.5] and [0.5,4.5], respectively [7]. For PBILOTA, population size is set to 100 and the 

initial probability vector is set based on the solution obtained from EDDPM. The learning rate 

represents the speed of convergence. As the learning rate is increased, the speed of convergence is 

increased while the search portion is decreased. To increase the chance for finding feasible 

solution, 0.05=LR  is used in this study and the maximum number of iterations, 500 iterations, is 

set to be the stopping criteria.  

 

3.3 Results 
 

By the parameter setting addressed in previous section, 5 random problems are generated for each 

level of   and 5 run times of PBILOTA are performed for each problem. Thus, total of 375 

problem combinations are tested. Since no exact numerical results are available, the results 

obtained from PBILOTA are compared to EDDPM combined with optimal timing algorithm to 

evaluate the performance.  

Table 3 shows the average relative percentage deviation resulting from the comparison of 

PBILOTA and EDDPM algorithms mentioned in section 2. The first column shows the number of 

jobs with up to 100 jobs. The number of jobs divided by the different three levels of   in the 

second column results in the different number of machines shown in the third column. To indicate 

that the application of PBILOTA can minimize the earliness and tardiness penalties, the relative 

percentage deviation (RPD) for all instances is calculated as follow: 

 

100
−

= EDDPM PBILOTA

EDDPM

sol sol
RPD

sol
                (4) 

 

where EDDPMsol  and PBILOTAsol  are the solutions obtained from EDDPM and PBILOTA algorithms, 

respectively. Because five problems are randomly generated for each level of   and PBILOTA is 

applied for five run times in each problem, the average RPD for each level is computed as shown 

in the last column of Table 3. The average RPD indicates the decrease in total cost compared to 

EDDPM. For 20 jobs with 4 =  and 5 = , total cost is reduced more than the other cases 

because the jobs can normally be allocated to machine resulting in the increase in the chance for 

shifting the job near to the due date. When the number of machines is decreased by the increase of 

 , the average RPD is decreased because the different cost between EDDPM and PBILOTA is 

lower indicating that EDDPM creates good initial population. As seen from Table 3, the average 

RPD trends to be decreased except for the case of 60 jobs. In the case that the number of machines 

is decreased and the number of jobs is increased simultaneously, the number of jobs per machine 

is increased causing extended block size of job. Therefore, jobs at the beginning and at the end 

parts of block are completed far from their due dates. However, the better solution can be obtained 
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by PBILOTA based on the improvement of probability values in probability vector. Overall, 

PBILOTA can reduce the cost for all instances. 

Figure 5 shows the convergence of proposed PBILOTA method for some problems of 20 

to 100 jobs with different  . It can be seen that the solutions are converged to a single point that 

the probability values in probability vector are approached to either 0 or 1. 

 

Table 3. Average RPD obtained from the comparison of EDDPM and PBIL algorithms. 

Jobs   Machines Average RPD (%) 

n = 20 

4 m = 5 42.23 

5 m  = 4 44.34 

6 m  = 3 24.73 

n = 40 

4 m  = 10 29.29 

5 m  = 8 39.07 

6 m  = 7 31.81 

n = 60 

4 m = 15 27.08 

5 m = 12 31.78 

6 m = 10 32.11 

n = 80 

4 m = 20 33.28 

5 m = 16 31.73 

6 m = 13 24.90 

n = 100 

4 m = 25 28.29 

5 m = 20 24.94 

6 m = 17 23.85 

 

 

Figure 5. Convergence of solutions obtained from PBILOTA 

 

 

4. Conclusions 
 

Parallel machine scheduling problem to minimize earliness and tardiness cost is studied. 

Population-based incremental learning (PBIL) algorithm combined with optimal timing algorithm 

called PBILOTA is proposed for solving this problem. Computational results demonstrate that the 

better solution for each iteration can be obtained by the improvement of probability values. In the 

case that the number of machines is decreased and the number of jobs is increased simultaneously, 

PBILOTA is still able to find higher quality of solution. The results also show that EDDPM 
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creates good initial solution resulting in faster improvement of PBILOTA solution. It can be 

concluded that PBILOTA is an efficient algorithm and suitable for solving parallel machines 

scheduling problem with earliness and tardiness cost minimization. Developing other dispatching 

rules to create initial population or integrating heuristic algorithms in the proposed method may be 

performed for the extension of the study to improve the solution quality. Furthermore, additional 

conditions such as job sequence dependent setup time and machine dependent processing time are 

the options for further research. 
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